Teach inheritance with Fast Plants – Where to start?

Are you just deciding how to start to teach inheritance patterns with Fast Plants?  Or maybe you’ve used Fast Plants before and are ready to add another layer to your inheritance investigations. Because we have so many resources available, choosing where to start can be a bit daunting. So, in this post we guide you through the decision making process and link to key resources, including:

  • how to design an inheritance investigation that fits your timeframe,
  • which varieties of Fast Plants will work best for what you want to teach, and
  • what growing system is a good choice for your classroom.
Three key reasons for using Fast Plants to teach inheritance

Why are Fast Plants an excellent model organism for teaching heredity? Because learning about inheritance with worksheets and Punnett squares can be boring, and students can learn more conceptually with hands-on inheritance investigations. In addition, developing inheritance models with Fast Plants sets the stage for rigorous, Three Dimensional learning as described by the Next Generation Science Standards.  For these reasons and more, Fast Plants make an excellent model organism for interactive lessons about inheritance and genetics.


Independent Studies Student

Three reasons to teach inheritance and genetics with Fast Plants

  1. Sexual reproduction in Fast Plants is easy to observe firsthand. In addition, when Fast Plants flower, students assist in reproduction. In just two weeks after planting, Fast Plants mature and flower. During pollination, students use bee sticks (or something similar) to transfer pollen from flowers on one plant to another.
  2. Fast Plants rarely self pollinate. So, if pollen from one flower on a plant falls on the stigma of a flower on the same plant, no fertilization takes place. This means that reproduction in Fast Plants is similar to sexual reproduction in most animals, making them a powerful and easy-to-relate-to heredity model.
  3. Fast Plants are fast and easy to grow and won’t get loose in your school like fruit flies. Also, teaching inheritance with Fast Plants can be done in lots of different ways–some in as few as 72 hours! In this post, we’ll help you choose the option that best fits your schedule and learning goals.

Where to start with Fast Plants and teaching inheritance is a great question with real-life and culturally relevant beginnings. Firstly, and most naturally, we can start with the produce aisle in any grocery store. Here, we see many vegetables from the Brassica family. And noticing the amazing variation in all these Brassicas we eat is a great foundation for investigating inheritance and genetics.

where to start with Fast Plants

In addition to Brassicas relevance as easy to recognize foods we eat, they’re also at the heart of many active research programs worldwide. In fact, some students may find themselves researching Brassicas if they choose life sciences as an academic or career path.

Where to start: Brassica research
Today, scientists actively research Brassicas for a variety of reasons.

Whichever the specific Fast Plants variety or growing system is that you choose, students will have opportunities for observing variation firsthand. From their firsthand observations, students can then gather the evidence needed to develop explanations for directly observed inheritance patterns.

 
Where to start? Choosing an inheritance investigation that fits your timeframe

An inheritance investigation with Wisconsin Fast Plants can be designed in several ways, depending on your learning goals and the available timeframe for conducting the investigation.

  • Option A: Fast Plants parental and F1 varieties are grown in soil, heritable phenotypes are observed, and students pollinate F1 plants to produce their own F2 seeds. When F2 seeds mature, they are germinated in Petri dishes and F2 seedling phenotypes are observed.
  • Option B: Fast Plants parental and F1 varieties are grown in soil and heritable phenotypes are observed. Students pollinate F1 plants, but instead of waiting for seeds to mature, time is saved when are F2 seeds are purchased, germinated in Petri dishes, and used to observe F2 phenotypes.
  • Option C: All Fast Plants generations are germinated in Petri dishes and observed as seedlings, and phenotypes are observable within 72 hours.

The graphic below (viewable/printable in full resolution here) depicts each of the three options above, and, further, shows an approximate timeline for each investigation design. Note that the graphic below features seed varieties for teaching a Monohybrid Inheritance investigation with Purple Stem/Non-Purple Stem Fast Plants. Continue reading to learn how to use other Fast Plants varieties to conduct a dihybrid investigation or to explore the inheritance of different traits.

Teach Inheritance with Fast Plants -- three timelines for genetics investigations
Where to start? Choosing varieties of Fast Plants
Teach Inheritance with Monohybrid Fast Plants -- Stem Color Traits
—–P1—————P2—————F1—————F2
Teach Inheritance with Dihybrid Fast Plants -- Plant Stature and Stem Color
—–P1—————P2—————F1—————F2

Now, let’s think back to the different potential timeframes to teach inheritance investigations. Monohybrid and dihybrid investigations are possible using any of the Options A, B, C, described above. For options A and B, no matter whether you’re conducting a monohybrid or dihybrid investigation, the protocols will be similar, the difference is in the phenotypes that students will observe. However, for option C protocols will differ slightly. Monohybrid investigations can utilize the easy-to-use, complete seed disk set for simple setup and observation of seedlings. Dihybrid seed varieties are not available in seed disks, thus seeds must be manually placed onto wet paper towel in Petri dishes.

Listed below is an alternative for a Dihybrid investigation. This investigation uses the Yellow-Green Leaf trait, which does not express well (i.e. it is difficult to observe) in a Petri dish. Genetics investigations with Yellow-Green Leaf are observed most easily with plants grown in soil. They can be conducted in any of the timeframes described above, but require that seeds be germinated in soil instead of in a Petri dish.

Teach Inheritance with Dihybrid Fast Plants -- Leaf Color and Stem Color
—–P1—————P2—————F1—————F2
Where to start? Choosing a growing system

Whether you’re using a ready-to-go growing system kit or a DIY growing system solution, Fast Plants are easy to grow in a variety different growing systems. To be successful, a Fast Plants growing system should provide continuous moisture (via wicking), utilize a soil-free potting mix, and be placed under continuous, 24-hour, light of sufficient intensity. Check out this video for a short overview of three popular, time-tested growing systems. After that, continue watching this playlist for detailed planting guides in different growing systems. Finally, check out the Preparation page for links to DIY guides for popular growing systems. Now, get growing! 🌱