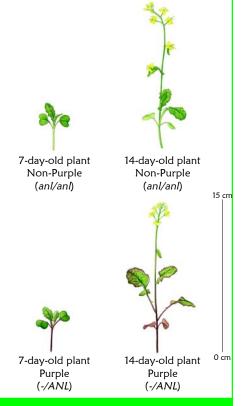


F₁ and F₂ Generations of

Non-Purple Stem

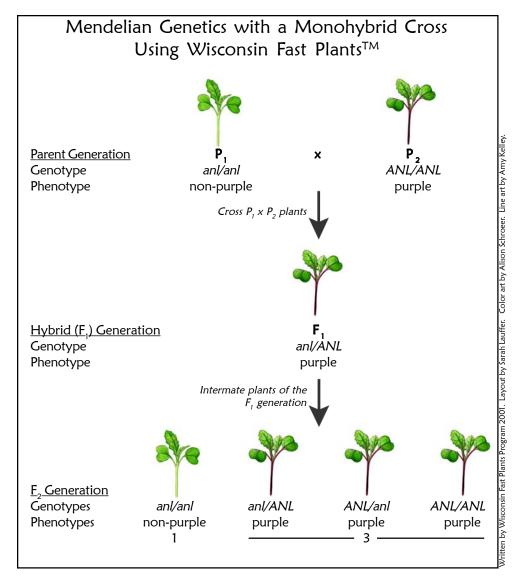
Single, recessive trait: anl/anl

The F₁ (hybrid) generation is produced by crossing Non-Purple Stem plants (anl/anl) with Purple Stem plants that are homozygous for the wild-type allele (ANL/ANL). The resulting F₁ progeny have <u>purple stems</u>. The F₁ genotype is heterozygous (anl/ANL). This illustrates the principle of dominance.


The F_2 generation is produced by intermating the F_1 population and harvesting the seeds. The plants in this generation segregate in a 3:1 ratio of Purple:Non-Purple. (See back page for details.) This illustrates the Law of Segregation.

Purple Stem plants produce anthocyanin, a purple pigment found in Standard Wisconsin Fast PlantsTM. The purple color is visible on the stems and hypocotyls, under cotyledons, and at the leaf tips and hydathodes. Their genotype is either *ANL/ANL* or *anl/ANL* (which is abbreviated -/*ANL*).

Non-Purple Stem plants do not produce anthocyanin. The lack of anthocyanin causes the plants to appear a brilliant green color. Their genotype is anl/anl.


This stock is designed for teaching Mendelian genetics with a monohybrid cross. (See back page for details.)

Length of life cycle: 35-45 days
Days to flowering: 14
Average plant height at day 14: 15 cm

Growing Tips

- 24-hour fluorescent light, water, and fertilizer are essential for Wisconsin Fast Plants[™]. Refer to Growing Instructions for more details.
- Prior experience growing WIsconsin Fast PlantsTM is useful for comparing Non-Purple Stem and Purple Stem.
- The purple color is best observed on the hypocotyls (stems) when the plants are 4-7 days old.
- The amount of purple color is affected by the environment. A deeper purple color results from high light levels, low nutrient (fertilizer) levels, or petri-plate germination.

Tips for a Monohybrid Cross with the Anthocyaninless (anl) Gene

To ensure high seed yields, follow the *Growing Instructions* carefully. Expect an approximate 3:1 ratio of plants in the F_2 generation. Due to the random nature of gamete segregation, an exact 3:1 ratio is unlikely to be observed. Use the ratio as a foundation for understanding the Law of Segregation. Try graphing the data to see patterns, or do a χ^2 test to estimate the probability of the results. See *www.fastplants.org* for details about how to do this monohybrid investigation, or for information about the companion dihybrid investigation.

Wisconsin Fast Plants™ Seed Stocks Available:
Standard • Purple Stem, Hairy • Non-Purple Stem, Hairless
Non-purple Stem, Yellow-Green Leaf • Yellow-Green Leaf • Petite
Rosette-Dwarf • Tall Plant • Variegated • F, and F, Genetic Stocks